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Abstract

A framework derived from thermodynamic principles of solid–liquid equilibrium criteria was
formulated to correlate and predict the precipitation of salts from aqueous solutions using organic
solvents. The activity coefficient of a given salt in a mixed-solvent mixture was related to the

Ž .activity coefficients of such a salt in each of the pure solvents water and organic using the excess
Ž E.Henry’s constant approach H . The Wohl’s expansion was then employed to model the excessi

Ž E.Gibbs free energy g function. Two equations were provided; the two-suffix equation, and the
three-suffix equation. A previously acquired precipitation database was used to evaluate the
correlative ability of the framework equations. The precipitation measurements were adequately
correlated and predicted by the two interaction parameters equation; the two-suffix equation.
However, the three-suffix equation, with three interaction parameters, was more accurate. The
regressed interaction parameters can be used as predictive tools to estimate the precipitation

Ž .fractions P for the tested systems for which no experimental data are available. Furthermore,
such parameters can be employed to predict the solubilities of the tested salts in the organic
solvent. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The physical chemistry of inorganic–aqueous systems is complex due to phenomenon
of interactions such as long-range electrostatic interactions between ions, solvation of
ions, and the association between cations and anions. These interactions become more
complicated for systems containing inorganic species in mixed-solvent mixtures. None
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of such interactions is sufficiently insignificant in relation to others so that it may be
neglected.

Several theories have been proposed to describe the phase behavior of inorganic
Ž w x.species in mixed-solvent mixtures e.g. Ref. 1 . A sensitive test for the abilities of a

given theory is its usefulness in understanding the effect of various forces and
interactions on structural and thermodynamic properties. Yet, no theoretical treatment
exists to fulfill such a purpose. However, various proposed empirical and semi-empirical

Ž w x.models give reasonable approximation in targeted applications e.g. Refs. 2–5 .
One goal of solution thermodynamics is to formulate models to describe quantita-

tively the phase behavior of pure fluids and mixtures. Most of these models are
semi-empirical and their development and evaluation require phase equilibrium data, and
proper mathematical and statistical tools. Therefore, in engineering applications, one of
the main advantages of thermodynamic models is the reduction of experimental efforts
w x6 .

The objective of this work was to formulate a thermodynamics framework as a means
to predict the phase behavior of the precipitation process that we have developed in our

w x w xprevious work 7,8 . A previously acquired precipitation database 9 was employed to
evaluate the framework equations. The impetus of this modeling effort was guided by

w xthe fact that precipitation measurements are costly and time consuming 9 . Thus, a
practical framework with theoretical foundation, minimum empiricism, and acceptable
prediction ability is needed.

2. Model development

The approach followed here is to transcend the complexity of inorganics phenomenon
Ž .interactions ion–ion and ion–solvent interactions , while providing a simple and

practical model, using basic thermodynamic principles. As such, a system of a given salt
Ž .in a mixed-solvent mixture water and organic is treated as a ternary system with

explicit account only for solvent–solvent interactions. Following is a presentation of the
developed model.

2.1. Salt solubility in a mixed-solÕent mixture

The phase behavior of a given system can generally be described by the change in
Gibbs free energy of mixing. For solid–liquid mixtures, the change in Gibbs free energy
Ž .dG is given by equating chemical potentials or equivalent fugacities in the two phases:

sfis LdGsm ym sRT ln s0 1Ž .i i Lf̂i

or

s ˆLf s f , 2Ž .i i
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where ms is the chemical potential of a solid salt, mL is the chemical potential of the salti i

in a liquid solution, R is the gas constant, T is the temperature, f s is the fugacity of thei
ˆ L Ž . Ž .solid salt, and f is the fugacity of the salt in a liquid solution. Eq. 1 or Eq. 2 cani

w xfundamentally be applied to virtually any given solute in a mixture 10,11 , including
w x Ž .salts 12 . In the case of a salt that forms crystal hydrate, however, Eq. 2 provides a

fundamental relation, which crudely describes the essential behavior of a salt in the solid
and liquid phases, considering the solid phase as a pure salt, but neglecting the crystal
hydrate formation within the solid phase.

ˆ LŽ .The fugacity of a salt in a liquid mixture f can be given as follows:i

ˆL of sx g f , 3Ž .i i i i

where x is the mole fraction of a salt, g is the symmetric activity coefficient of a salt,i i
o Žand f is the hypothetical fugacity of the salt in the mixture. The solubility molei
.fraction of a given salt can thus be written as follows:

sfi
ln x s ln y ln g . 4Ž .i iofi

The activity coefficient is either defined by Raoult’s law with reference to an ideal
ˆ L oŽ .solution symmetric activity coefficient: g ™1 as x ™1; g s f rx f , or byi i i i i i

ŽHenry’s law with reference to an ideal dilute solution unsymmetric activity coefficient:
U U ˆ L .g ™1 as x ™0; g s f rx H . The symmetric activity coefficient, however, isi i i i i i

w xrelated to the unsymmetric activity coefficient by the following relation 13 :

lim ln g s ln g y ln g
U 5Ž .i i i

x ™0i

or

Hi
lim ln g s ln , 6Ž .i ofx ™01 i

where H is the Henry’s constant of a salt in a mixture.i

If the salt is labeled as species 1, water as species 2, and organic solvent as species 3,
Ž . Ž . Ž .expressions for the solubilities of the salt in the: 1 water solvent x ; 2 organic1,2

Ž . Ž . Ž .solvent x ; and 3 mixed-solvent x can be derived, respectively, as follows:1,3 1,m

sf1
ln x s ln , 7Ž .1,2 H1,2

sf1
ln x s ln , 8Ž .1,3 H1,3

sf1
ln x s ln . 9Ž .1,m H1,m

The fundamental application of the above equations hinges on the validity of Henry’s
law. Henry’s law provides a good approximation for the solubility of a given solute in a
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solution at ‘‘low’’ concentrations. The term ‘‘low’’, however, depends on the chemical
identities of both solute and solvents. In this work, the initial concentrations, x , of the1,2

Ž y3 y4tested salts in pure water chloride ions: 5000 and 10,000 mgrl, f10 to 10 ;
y4 y5.sulfate ions: 1000 mgrl, f10 to 10 to be suppressed by adding an organic
Ž .solvent is very low, and decrease x as the amount of the organic solvent increases.1,m

Ž .Furthermore, the solubility of the tested salts in the organic solvent x is extremely1,3
Žlow. As such, the use of Henry’s Law is valid for the tested systems x -x -x :1,3 1,m 1,2

y3 y5.10 to 10 .
In most problems involving the solubility of a solid solute in a mixed-solvent

mixture, the solvent compositions are approximated by their solute-free volume fractions
w x10,13 . The volume fraction is given as follows:

x Õi i
u s , 10Ž .i 3

x ÕÝ i i
is2

Ž .where Õ is the pure solvent molar volume. As x decreases x or u ™0 with thei 1,m 1,m 1

increase in the volume of the organic solvent, the volume fractions of the mixed solvents
Ž .become approximately salt-free u qu f1 .2 3

Ž . Ž . sUsing Eqs. 7 and 8 , expressions for the f can be derived in terms of the salt-freei

volume fractions of the solvents as follows:

s w x w xln f su ln x q ln H qu ln x q ln H . 11Ž .1 2 1,2 1,2 3 1,3 1,3

Ž . Ž .Substituting Eq. 11 into Eq. 9 , leads to

ln x su ln x qu ln x y ln H E , 12Ž .1,m 2 1,2 3 1,3 1

where H E is the excess Henry’s constant and given as follows:1

ln H E s ln H yu ln H yu ln H . 13Ž .1 1,m 2 1,2 3 1,3

( E)2.2. The excess gibbs free energy g function

Ž . ETo use Eq. 12 , an expression for the H in terms of activity coefficients is needed.i

The g E function can be employed to obtain such an expression. Models such as the
one-term Margules, van Laar, Wohl expansion, Kirkwood–Buff, Wilson, T–K–Wilson,

E w xand others can be employed to express the g function 10,11,13 . These models
involve semi-empirical correlations for activity coefficients with the exception of the

w xKirkwood–Buff model, which is based on the statistical mechanical theory 11 .
ŽThe Wohl expansion model and its special cases e.g. the one-term Margules and the

.van Laar models do not require knowledge of the solute–solvent interactions. In
contrast, knowledge of such interactions is needed for models such as the Wilson or the
T–K–Wilson to characterize the nonideality of the system. As such, the simplicity of the
Wohl’s expansion model compared to other models makes it more appropriate as a
general form to model the H E of a salt in a mixed-solvent mixture.i
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w x EAccording to the Wohl’s expansion model 14 , the g of a ternary mixture
Ž . Ž .three-suffix is expressed in terms of increasing powers of the volume fractions u of
the treated species as follows:

g E

s2 a u u q2 a u u q2 a u u12 1 2 13 1 3 23 2 3w xRT x Õ qx Õ qx Õ1 1 2 2 3 3

q3a u 2u q3a u u 2 q3a u 2u112 1 2 122 1 2 113 1 3

q3a u u 2 q3a u 2u q3a u u 2
133 1 3 223 2 3 233 2 3

q6a u u u , 14Ž .123 1 2 3

where the Õ’s are the effective volume or cross-section of the molecules, and the a’s are
the interaction parameters. The ratio of the Õ’s is assumed to be the same as the ratio of

w xthe pure component liquid molar volumes 13 . The following abbreviations can be
w xintroduced 14 :

w xÕ 2 a q3a sL , 15Ž .1 12 122 12

w xÕ 2 a q3a sL , 16Ž .2 12 112 21

w xÕ 2 a q3a sL , 17Ž .1 13 133 13

w xÕ 2 a q3a sL , 18Ž .3 13 113 31

w xÕ 2 a q3a sL , 19Ž .2 23 233 23

w xÕ 2 a q3a sL , 20Ž .3 23 223 32

Õ2
L sL . 21Ž .1 2

Õ1

E w xThe activity coefficient is related to the g by the following relation 13 :
EEg

RT ln g s . 22Ž .i
Exi T , p , x1

The Wohl’s definition of g E is based on the symmetric activity coefficients, and thus in
this case, the unsymmetric activity coefficients are already related to those of the

Ž .symmetric ones. Therefore, the activity coefficient of a given salt g in a mixed-solvent1
Ž . Ž .mixture can be obtained by differentiating Eq. 14 with respect to x u using the1 1

Ž . Ž .abbreviations given by Eqs. 15 – 21 :

Õ Õ1 12 2ln g su L q2u L yL qu L q2u L yL1 2 12 1 21 12 3 13 1 31 13½ 5 ½ 5ž / ž /Õ Õ2 3

Õ Õ Õ1 1 1
qu u L qL yL q2u L yL2 3 21 13 32 1 31 13½ ž / ž / ž /Õ Õ Õ2 3 3

Õ Õ1 1
q2u L yL yL 1y2u . 23Ž . Ž .3 32 23 1 1 5ž / ž /Õ Õ3 2
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The number of adjustable parameters can be reduced by neglecting the third body of
w xinteractions between the salt and each of the solvents 14 :

a sa , 24Ž .122 112

a sa . 25Ž .113 133

w xIt should be pointed out that the van Laar equation 15 can be obtained if the same
Ž .justification is applied to the solvent–solvent interaction parameters L and L by23 32

w xsetting 14 :
a sa . 26Ž .223 233

Ž . Ž .The approximations given by Eqs. 24 and 25 , lead to
L Õ21 2

s , 27Ž .
L Õ12 1

L Õ31 3
s . 28Ž .

L Õ13 1

Ž . Ž . Ž . Ž .As x u approaches zero, and by introducing Eqs. 27 and 28 into Eq. 23 ,1 1
Ž . Ž .expressions for the activity coefficients of a given salt in the: 1 water solvent g ;1,2

Ž . Ž . Ž . Ž .2 organic solvent g ; and 3 mixed-solvent mixture g can be given as follows:1,3 1,m

lim ln g sL , 29Ž .1,2 12
x ™01

lim ln g sL , 30Ž .1,3 13
x ™01

Õ1 w xlim ln g sL u qL u qL u u 2u y11,m 12 2 13 3 32 2 3 3
Õx ™01 3

Õ12yL 2u u yL u u , 31Ž .23 2 3 1 2 3
Õ2

where L and L are interaction parameters between the salt and the solvents, L12 13 23

and L are interaction parameters between the solvents, and L is the salt binary-solvent32 1
Ž . Ž .interaction parameter ternary constant . Eq. 31 reveals that the salt–solvents interac-

Ž .tion parameters L and L are canceled out. This demonstrates the simplicity of the21 31
w x w xWohl expansion model 14 over, for instance, the Wilson equation 16 or the

w xT–K–Wilson equation 17 .
Ž . Ž . Ž . Ž .Substituting Eqs. 29 – 31 into Eq. 13 through the use of Eq. 6 , leads to

Õ Õ1 1E 2w xln H su u 2u y1 L y2u u L yu u L . 32Ž .1 2 3 3 32 2 3 23 2 3 1
Õ Õ3 2

It should be noted that the f o is canceled out in the final expression of the H E. This1 1
E Ž odemonstrates the convenience of using the H approach the numerical value of f is1

. Ž . Ž .not of concern . Substituting Eq. 32 into Eq. 12 , leads to the three-suffix equation for
the solubility of a given salt in a mixed-solvent mixture:

Õ1w xln x su ln x qu ln x yu u 2u y1 L1,m 2 1,2 3 1,3 2 3 3 32
Õ3

Õ12q2u u L qu u L . 33Ž .2 3 23 2 3 1
Õ2
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Ž .Rearranging Eq. 33 , leads to

x x Õ Õ1,m 1,3 1 12w xln su ln yu u 2u y1 L q2u u L qu u L .3 2 3 3 32 2 3 23 2 3 1x x Õ Õ1,2 1,2 3 2

34Ž .

The precipitation measurements are presented in terms of salts precipitation fractions
Ž .P upon the addition of an organic solvent to an aqueous solution. Therefore, the

Ž . w xleft-hand side of Eq. 34 can be related to the P as follows 9 :

x1,m w xln s ln 1yP . 35Ž .
x1,2

As such, the final expression for the ternary three-suffix equation for the precipitation
measurements is given as follows:

x Õ Õ1,3 1 12w x w xln 1yP su ln yu u 2u y1 L q2u u L qL u u .3 2 3 3 32 2 3 23 1 2 3x Õ Õ1,2 3 2

36Ž .

Similarly, a ternary two-suffix equation can also be obtained by ignoring the third body
Ž . Ž .of interactions in Eq. 14 , and following the same procedure that led to Eq. 36 .

Accordingly, the final expression for the ternary two-suffix equation can be given as
follows:

x Õ1,3 1w xln 1yP su ln qu u L . 37Ž .3 2 3 32x Õ1,2 3

2.3. SolÕent–solÕent interaction parameters

Ž .If the solubility of a tested salt in an organic solvent is available x , the1,3
Ž .solvent–solvent interaction parameters L and L can be obtained from the23 32

vapor–liquid equilibrium data. The vapor–liquid equilibrium data can be used to fit the
g E to any suffix equation. The g E for the ternary three-suffix equation is given as
follows:

Eg x Õ qx Õ x Õ qx Õ2 2 3 3 2 2 3 32 2su u L qu u L 38Ž .2 3 23 2 3 32RT Õ Õ2 3

and the g E for the ternary two-suffix equation is given as follows:
Eg x Õ qx Õ2 2 3 3

su u L , 39Ž .2 3 23RT Õ3

where
E 3g

s x ln g sx ln g qx ln g . 40Ž .Ý i i 2 2 3 3RT is2
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Ž . Ž .As shown by Eq. 40 , the activity coefficients of the salt-free solvents water–organic
are needed. The UNIFAC model, which is a group contribution method, can be used to

Ž w x.estimate the activity coefficients of organic–aqueous systems e.g., Refs. 18–20 . The
UNIFAC model should provide good estimates for the activity coefficients of miscible

w xorganics in aqueous systems, since such systems are relatively simple 6 . The solvent–
Ž .solvent properties g , x , and Õ can then be employed to estimate L and L byi i i 23 32

Ž . Ž . Ž .combining either Eq. 38 or Eq. 39 with Eq. 40 .

3. Results and discussion

3.1. Database used

Previously acquired experimental precipitation measurements on chloride and sulfate
Ž . w xsalts using isopropylamine IPA as a precipitation solvent 9 were employed to

Ž .evaluate the framework equations. The measurements include: 1 chloride ions at 5000
mgrl: magnesium, magnesium–sodium, magnesium–potassium, calcium, calcium–
sodium, calcium–potassium, calcium–magnesium, calcium–barium, and calcium–

Ž .strontium; 2 chloride ions at 10,000 mgrl: magnesium, magnesium–sodium, magne-

Table 1
Ž Ž ..The two-suffix equation Eq. 37 representation of the tested systems

w xc s ln x r x ; c s L .1 1,3 1,2 2 32

System Model’s parameters RMSE %AAD NP

c c1 2

Chloride ions at 5000 mgr l
Magnesium y1.0561 y1.8747 0.0479 6.65 8
Magnesium–Sodium y1.1476 y0.4333 0.0545 8.22 8
Magnesium–Potassium y1.1674 y0.0054 0.0517 8.19 8
Calcium y1.0619 y1.7106 0.0559 8.20 8
Calcium–Sodium y1.0386 y2.1482 0.0551 8.87 8
Calcium–Potassium y1.0357 y2.1331 0.0549 8.48 8
Calcium–Magnesium y1.0911 y1.4655 0.0564 8.29 8
Calcium–Barium y1.0834 y1.3221 0.0539 8.74 8
Calcium–Strontium y1.0279 y1.9949 0.0566 9.12 8

Chloride ions at 10,000 mgr l
Magnesium y1.1179 y0.6211 0.0533 8.10 8
Magnesium–Sodium y1.1211 y0.4171 0.0423 5.72 8
Magnesium–Potassium y1.1033 y1.1037 0.0448 6.93 8
Calcium y1.1015 y0.7582 0.0488 6.97 8
Calcium–Sodium y1.1148 y1.0236 0.0429 7.36 8

Sulfate ions at 1000 mgr l
Magnesium y1.4701 1.1334 0.0289 6.47 8
Calcium–Magnesium y2.2507 0.2566 0.0372 4.47 8
Calcium–Sodium y2.1647 y1.1747 0.0616 4.58 7
Calcium–Potassium y4.5601 7.8052 0.3085 10.02 7
Calcium y6.5038 5.8016 0.1264 3.90 8
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Ž .sium–potassium, calcium, and calcium–sodium; and 3 sulfate ions at 1000 mgrl:
calcium, magnesium, calcium–magnesium, calcium–sodium, and calcium–potassium.
Detailed information regarding the tested precipitation database can be found elsewhere
w x9 . It should be pointed out that species 1, which is given in Section 2, is referred to the
chloride or sulfate ion in any given salt system.

3.2. Data reduction procedure

Regressions of the precipitation measurements were performed using the weighted
Ž .least squares objective function SS . A Marquardt nonlinear regression procedure was

w xemployed in the precipitation calculations 21 . The objective function, SS, used for the
evaluation of the model equations is given as follows:

NP Y yYcal exp
SSs , 41Ž .Ý

Yexpis1

where Y is the calculated variable, and Y is the experimental variable, and given ascal exp

follows:
w xYs ln 1yP . 42Ž .

Ž . Ž .According to Eq. 41 , the root mean square error RMSE provides an appropriate

Table 2
Ž Ž ..The three-suffix equation Eq. 36 representation of the tested systems

w xc s ln x r x ; c s L ; c s L .1 1,3 1,2 2 32 3 23

System Model’s parameters RMSE %AAD NP

c c c1 2 3

Chloride ions at 5000 mgr l
Magnesium y2.3042 2.5413 3.5875 0.0129 2.07 8
Magnesium–Sodium y2.7322 5.2114 4.9460 0.0123 2.19 8
Magnesium–Potassium y2.5727 5.1708 4.4624 0.0180 3.18 8
Calcium y2.6175 3.7341 4.5919 0.0096 1.53 8
Calcium–Sodium y2.7405 3.5254 4.9728 0.0172 2.17 8
Calcium–Potassium y2.7263 3.4764 4.9418 0.0186 3.23 8
Calcium–Magnesium y2.7404 4.2334 4.9415 0.0158 2.30 8
Calcium–Barium y2.7466 4.3612 5.0166 0.0180 2.55 8
Calcium–Strontium y2.6893 3.6870 4.8689 0.0100 1.67 8

Chloride ions at 10,000 mgr l
Magnesium y2.5388 4.5891 4.3836 0.0078 1.34 8
Magnesium–Sodium y2.1536 3.4519 3.1999 0.0124 2.17 8
Magnesium–Potassium y2.2357 3.0572 3.3753 0.0090 1.72 8
Calcium y2.3912 3.9640 3.9432 0.0048 0.87 8
Calcium–Sodium y2.2308 3.0538 3.3416 0.0138 2.44 8

Sulfate ions at 1000 mgr l
Magnesium y2.3699 2.2162 1.1202 0.0264 4.18 8
Calcium–Magnesium y3.0013 1.1303 0.3901 0.0310 4.22 8
Calcium–Sodium y4.2572 y0.7614 1.8197 0.0156 1.08 7
Calcium–Potassium y9.1327 16.4653 5.8814 0.0507 3.35 7
Calcium y9.0664 9.4756 3.3240 0.0785 3.03 8
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measure for the overall performance of the model for a given data set more so than the
Ž .percentage average absolute deviation %AAD .

3.3. Model eÕaluations

Ž . Ž .The acquired precipitation database was used to test and evaluate Eqs. 36 and 37 .
Ž Ž .Tables 1 and 2 present a summary of the results of the tested equations Eqs. 36 and

Ž ..37 for the studied systems. These tables include interaction parameters of the model
equations and complete statistics.

Due to the lack of knowledge in the solubilities of the tested chloride and sulfate salts
Ž . Ž . Ž .in IPA x , Eqs. 38 – 40 were not used to estimate the solvent–solvent interaction1,3

Ž .parameters. The solvent–solvent interaction parameters L and L were obtained23 32
Ž .using the objective function of Eq. 41 through the precipitation calculations. However,

Ž . Ž .x can be reasonably estimated from the regressed parameters of Eq. 36 or Eq. 37 .1,3

As demonstration cases, Figs. 1–3 present samples of graphical representations
Ž .magnesium chloride: 5000 and 10,000 mgrl; magnesium sulfate: 1000 mgrl that

Ž .reveal the experimental precipitation measurements along with the fit of Eqs. 36 and
Ž .37 . These figures exhibit plots of the left-hand side of these equations vs. the IPA

Ž .salt-free volume fraction u . Without the addition of IPA, the left-hand side of these3
Ž .equations is zero, since there is no precipitation Ps0 . However, without the use of

Ž .the solvent–solvent interaction parameters L andror L , the precipitation measure-32 23

Fig. 1. Precipitation of 5000 mgrl of chloride ion from magnesium–chloride system.
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Fig. 2. Precipitation of 10,000 mgrl of chloride ion from magnesium–chloride system.

ments can be fit with a straight line. This situation is equivalent to the ideal mixture
solubility based on Henry’s law. To extend the model fitting to the maximum value of
u , the solvent–solvent interaction parameters are needed to account for the nonideality.3

Ž . Ž .The three-suffix equation, Eq. 36 , with four interaction parameters including L1

represents the ultimate correlative ability. Such a level of complexity may be excessive,
Ž .since the RMSE for the precipitation measurements using Eq. 36 without L are1

mostly within the expected experimental uncertainty in the combined precipitation data
Ž . Ž .sets used. Hence, the salt binary-solvent interaction parameter L in Eq. 36 is1

neglected.
Ž .As shown in Table 1, Eq. 37 , the two-suffix equation, with one solvent–solvent

Ž .interaction parameter L provides good predictions over the entire range of u . As32 3

given in Table 2, however, some improvements in the predictive ability were achieved
Ž .when the two solvent–solvent interaction parameters were employed by Eq. 36 , the

Ž Ž .three-suffix equation e.g., for magnesium chloride system at 5000 mgrl; Eq. 37 :
Ž . .RMSEs0.0479, %AADs6.65; Eq. 36 : RMSEs0.0129, %AADs2.07 . Such im-

provements were attributed to the unsymmetric solvent–solvent interaction parameters
with respect to u . The combination of these two solvent–solvent interaction parameters3
Ž . Ž .L and L in Eq. 36 provides good correlation for the precipitation measurements.32 23

While both the two-suffix and three-suffix equations are capable of correlating the
solubility phase behavior of a salt in a mixed-solvent mixture, the three-suffix equation
is statistically superior.
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Fig. 3. Precipitation of 1000 mgrl of sulfate ion from magnesium–sulfate system.

Samples of graphical representations of the experimental P at different solvents
Ž .volume ratio V along with their error intervals, and the predicted P by the optimumR

Ž .predictive equation, Eq. 36 , are also given in Figs. 1–3. These figures, as demonstra-
Ž .tion cases, reveal the ability of Eq. 36 , the three-suffix equation, to accurately predict

the P of the studied systems.
Ž . w xSince the P of all chloride ions at 5000 and 10,000 mgrl are almost identical 9 ,

Žgeneral interaction parameters are regressed using all the chloride salts systems 14
.systems . The general regressed parameters for all chloride using the three-suffix

equation, the optimum predictive case, along with the statistics are given as follows:
C sy2.0509; C s5.4493; C s3.0554; RMSEs0.0510; %AADs12.42; and NP1 2 3

s112. These parameters can be used to estimate the P of the tested chloride systems at
Ž .higher values of V e.g., V s3.0 or 4.0, etc. or possibly at different chlorideR R

concentrations where no experimental data are available. This would provide economy
Ž .of experimental effort and cost savings not to waste the organic solvent .

Several factors would determine the suitability of a selected organic solvent for the
precipitation process. However, one of the most important factors in selecting the

w xorganic solvent is the solubility of the targeted salt in such a solvent 22 . A further
benefit of the model’s interaction parameters is to provide a reasonable estimate for the
solubility of the targeted salts in the organic solvent. The estimate of the salt solubility
in the organic solvent would facilitate further interpretation to the controlling factors in
the precipitation phenomenon.
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Tables 3 and 4 present the estimated solubilities of chloride and sulfate salts in IPA
Ž . Ž . Ž .x in terms of C using the interaction parameter C of Eq. 36 , the optimum1,3 1,3 1

predictive case. The solubility of a salt in a simple organic solvent is typically orders of
w xmagnitude less than the aqueous salt solubility 23 . As shown in Table 3, the solubilities

of the chloride salts in IPA are about 7% of their aqueous solubilities. Table 4, however,
indicates that solubilities of sulfate salts in IPA are appreciably varied, and are

Žsignificantly lower than the solubilities of the chloride salts in IPA the lower the x ,1,3
. Ž .the higher the P . This would explain: 1 the relatively low P of the tested chloride

Ž . Ž . w x Ž .salts e.g. Pf60% compared to the sulfate salts e.g. Pf98% 9 ; and 2 the
Žprecipitation orders of the sulfate salts %P: magnesium sulfate-calcium–magnesium

. w xsulfate-calcium–sodium sulfate-calcium–potassium sulfate-calcium sulfate 9 .
It should be pointed out that no experimental data are available regarding the

solubilities of the tested salts in IPA to draw a conclusion about the reliability of the

Table 3
Ž .Estimation of the solubility of the tested chloride salts in IPA using Eq. 36

Ž . Ž .System C mgrl C mgrl1,2 1,3

Magnesium
MgCl –6H O 14,340 14322 2

Magnesium– Sodium
MgCl –6H Or 7163 4662 2

NaCl 4125 268

Magnesium– Potassium
MgCl –6H Or 7163 5472 2

KCl 5246 400

Calcium
CaCl –2H O 10,365 7572 2

Calcium– Sodium
CaCl –2H Or 5184 3352 2

NaCl 4124 266

Calcium– Potassium
CaCl –2H Or 5182 3392 2

KCl 5272 345

Calcium– Magnesium
CaCl –2H Or 5184 3352 2

MgCl –6H O 7165 4632 2

Calcium– Barium
CaCl –2H Or 5183 3332 2

BaCl –2H O 8616 5532 2

Calcium– Strontium
CaCl –2H Or 5185 3522 2

SrCl –6H O 9406 6392 2
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Table 4
Ž .Estimation of the solubility of the sulfate salts in IPA using Eq. 36

Ž . Ž .System C mgrl C mgrl1,2 1,3

Magnesium
MgSO –7H O 2565 239.804 2

Calcium– Magnesium
CaSO r 711 35.404

MgSO –7H O 1283 63.804 2

Calcium– Sodium
CaSO r 708 10.004

Na SO 749 10.602 4

Calcium– Potassium
CaSO r 705 0.104

K SO 905 0.112 4

Calcium
CaSO 1412 0.164

Ž .estimated values by the model equation. However, it appears that Eq. 36 is capable of
predicting the expected trend and providing acceptable estimates.

4. Conclusions

A semi-empirical framework derived from thermodynamic principles was developed
to model the precipitation measurements. The framework was based on the criteria of
solid–liquid equilibria employing the approach. The Wohl’s expansion was used to
express the g E function. The framework provided two flexible and general correlative

Ž .equations the two-suffix and three-suffix equations . Both equations were adequate for
correlating the precipitation data as well as for estimating optimum interaction parame-
ters. However, the three-suffix equation with three interaction parameters, is quantita-
tively better than the two-suffix equation with two interaction parameters. The regressed

Ž .parameters can be used to estimate: 1 the P of studied systems at different concentra-
Ž . Ž .tions salt or organic solvent where no experimental data were available; and 2

solubility of the studied salts in the organic solvent.

Notation

a Constant characteristic of the interaction between molecules
%AAD Percentage average absolute deviation

Ž .C Model’s regression interaction parametersi

C Concentration of species i in solvent j, mgrli, j

dG Change in Gibbs free energy
s Ž .f Fugacity of a pure solute solidi
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ˆ Lf Fugacity of species i in a liquid solutioni

f o Fugacity of the hypothetical pure liquidi

g E Excess Gibbs free energy function
H E Excess Henry’s constant of species i in liquid solutioni

H Henry’s constant of species i in liquid solutioni

NP Number of points
P Precipitation fraction
R Gas constant
RMSE Root mean square error
SS Objective function
T Temperature
Õ Molar volume of solvent ii

Ž .V Solvent volume ratio organicrwaterR
Ž .x Mole fraction solubility of species i in liquid solutioni
Ž .x Mole fraction solubility of species i in solvent ji, j
Ž .x Mole fraction solubility of species i in mixed-solvent mixture mi,m

Greek symbols
Ž .L Salt binary-solvent interaction parameter ternary constant1

L Wohl’s interaction parameter of species i in solvent ji j

g Symmetric activity coefficient of species i in liquid solutioni

g Symmetric activity coefficient of species i in solvent ji, j

g Symmetric activity coefficient of species i in mixed-solvent mixture mi,m

g
U Unsymmetric activity coefficient of species i in liquid solutioni

ms Chemical potential of pure solutei

mL Chemical potential of species i in liquid solutioni

u Volume fraction of solvent ii

Subscripts
Ž .1 Salt species chloride or sulfate ion

2 Water solvent
3 Organic solvent
cal Calculated
exp Experimental
m Mixed-solvent mixture

Superscripts
E Excess
L Liquid phase
s Solid phase
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